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OPTIMIZATION OF THE DESCENT MANEUVERS OF A SATELLITE MODULE FROM

PLANETARY ORBIT

S. N. Kirpichnikov

Let us consider a space vehicle moving along an elliptical /5

orbit in the field of gravitation of a spherically symmetrical pla-

net. The space vehicle consists of two parts: the recovery module

(module I) and the orbital module (module II). It is necessary to

construct a maneuver which is optimal in fuel consumption for the

descent of module I to the planet. The maneuver is implemented with

the use of a single initial pulse, applied to module I so that the

orbital module continues to travel in the initial orbit, while the

recovery module transfers to a trajectory of approach with the pla-

net. The maneuver concludes with the landing of module I after

re-entry into the dense atmospheric: layers. The planet may be with-

out atmosphere, but then the maneuver concludes with the hard touch-

down of module I with its surface. In the latter case, we should

everywhere equate the altitude of the atmosphere to zero.

The launch will imply the moment of the initial pulse. For /6

purposes of definition, the finish will imply the landing of module

I on the-planet's surface. All the aforestated will, however, re-

main valid if we select some other fixed moment between the re-

entry of the module I and the landing as our finish point.

The initial orbit of the space vehicle and the trajectory of

the recovery module right until its re-entry are considered to be

Keplerian; we will only examine elliptical descent orbits having

motion which is straight with respect to the initial orbit. It is

presumed that the earlier known angular range, altitude variation

and time of motion in re-entry until the finish point are located

* Numbers in the margin indicate pagination in the foreign text.
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in a planetocentric plane passing through the vector of velocity

of module I during its re-entry.

With Tsiolkovsky's formula in mind, we will minimize the

characteristic velocity of the initial pulse, i.e., the modulus

of the pulse variation of velocity of module I.

In this study, the problem formulated is studied under comp-

lex limiting conditions. Notably incorporated are limitations on

the angle of re-entry and the distance between modules at the mo-

ment of finish. Moreover, condition of direct visibility between

modules or a more general limitation on the zenith distance of

module II at the finish point is taken into account; limitation on

the velocity of module I at the re-entry point may also be taken

into the calculation.

Following the method proposed by Ting Lu [1], it is easy to

prove that optimal descent orbits of these maneuvers, in all cases

of interest, must lie in the plane of the initial orbit; therefore,

this study is restricted to the coplanar statement of the problem.

1. Mathematical Statement of the Problem and General

Conclusions

In the plane of motion, let us introduc&' polar coordinates r,

e, with origin at the center of the planet so the direction of

positive reading of angle e coincides with the direction of motion

with respect to the initial orbit.

In addition to Keplerian orbital elements: semimajor axis a,

eccentricity e and angular distance w of the pericenter from the

polar axis we will consider the elements p, q introduced by the

formula

2



_ e
P= V ~) V=== (1)

Let pl' q1 , al', el' 1 be parameters of initial orbit; p, q, /7

a, e, w are parameters of the intermediate orbit of the descent

module.

Let us designate the moment of time and the polar coordinates

of the start and re-entry points of module I by tl, rl, wl and t2,
r2 ' W2' respectively. It is obvious that

r2 = rpl + hatm, (2)

where rpl--radius of the planet, hatm--altitude of dense layers of

the atmosphere. Let us introduce the parameter p2 in terms of the

formula

P2 = " ". (3)

Assumed that we are given change Ar of the polar radius, an-

gular range A8 and duration At of the flight of module I in the

re-entry layers to the finish point. Therefore, time t2 of the

finish and the polar coordinates r2, 82 of the finish point will be

(4)

If the finish implies the landing of module I on the surface

of the planet, then

(5)
Ar=h7T, r 2 =r, 
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but if it is the module's re-entry, then

•4 t=Ar =, r 2=r 2, 02 , -=... (6)

For polar radii rl and r2 we find

r q cos (.-- i)3 - [p+pq cOS ( 1-j )]-1, (7)
c- ----------

r2 p 2... = p2+pq cos (2- )-l
J (8)

The characteristic velocity AU of ,the 'initial pulse can be re-

duced to the form [2]

AU=KAV, (9)

AVt 3p~i+q--p --- 2qq cOS (-)-

S2 (p--pi) 2 q OS --- --

- (10)

where K--Gauss' constant multiplied by the square root of the pla-

net's mass. For A V, differing only in the constant factor from

AU, we retain the name of characteristic velocity. /8

ThelAslope 4t of thrust diirii :g .the initial pulse we will cal-

culate in the opposite direction of the transversal to the di-

rection of the pulse; then we will have

t"g t p [q sin (a-o)--ql sin (i--0)]
tg , (Pl-) [PI+,, COS (0l--m)] _

The signs of the numerator and denominator on the right side of (11)

coincide, respectively, with the signs of sin Dt and cos t."

Let us define the re-entry angle 0 as the angle between the

velocity vector of the recovery module and the plane of .the local
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horizon at time t2:

- pq sin ( , (12)

where Ur and U0 are, respectively, radial and transversal4 consti-

tuents of velocity Ure of module I at the moment it re-enters. The

values U , U( , Ure are defined by the formulasr 6re

(13)
U,=Kq sin ( 2-- ), U6 - Kp(

Up=K 2+q2-
7 

p2. (14)

Given'-> a: moment in time t2' the orbital module has a polar

radius r3 and polar angle 03 . For the latter values we find that

p (p+q cos V)
2  pi(R+ql cos v)2

r=[Pl PIplql cos (03-)] - 1.
. - -- (16)

The distance Z between modules at the moment of finish is

equal to

1=[t r-62rra3 cos (8-2) (17)

(17)

and the zenith distance z of module II at the finish point will be

z=arcos (18)
2r2 l

These relationships show that we may t'ke the following as

the basic parameters defining descent maneuvers

(19)
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which are dependent and satisfy the following constraints: /9

. (20)
:Pip2 +pq COS ( 1-w)-'P-pplq cos ( 1-wl)=0,

2=p 2+pq COS (02--)--p=0,
- - .-- (21)

dv d
S (p+qcos v) +KAt- p 1 +q cosv) 0d

(22)

The unknown optimal descent maneuver will imply a maneuver to which

corresponds the lowest value of the characteristic velocity'AV.

Let us move to consider additional limitations. Let us first

examine only limitations on the variables 1 and 1. The re-entry

angle D must lie within some given interval:

) . < < X . (23)min = max

The distance 1 between modules at the finish must not exceed a

set maximum value L:

I <L. (24)

After introducing the auxiliary substantial variables a, I,

we will write conditions (23), (24) thus:

. (- min-) ( -max): O , (25)
(25)

=1-L+P2= 0.

S o " (26)

Therefore, under, conditions (23), (24), the problem is mathe-

matically reduced to minimization of function (10) in the set of

substantial variables 0
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p, q, (27)

which satisfy conditions (20)-(22), (25), (26). As we know, the

derivatives with respect to all variables in (27) from the Lagrange

function must be equal to zero

V+) (28)

where Xi, X2, ... , XA are unknown constants.

Analysis of the equbtion of the extremum corresponding to

variable 8 is equal to zero and the condition 1 = L is satisfied;

or else the unknown solution corresponds to a relative minimum of

function AV in an auxiliary problem in which conditions (24), (26)

are admitted. Such systematic investigation is therefore recom-

mended.

1. Investigate the problem without taking into account the

limitations (23)-(26). Using the results of study [2] and a met-

hod analogous to that developed in article [3], we can easily.show /10

that the sole stationary solutions in the particular case are those

which are dervied in study [2] in the investigation of energetical-

ly optimal single-pulse flight between an elliptical initial and

circular final orbit. These solutions are characterized by apsi-

dal tangential conjunctions of the intermediate trajectories with

the initial orbit and a circle of radius r2. The trajectory emer-

ging from the apocenter of the initial orbit always requires less

fuel consumption versus a trajectory emerging from the pericenter.

For both stationary solutions the equality

O "_ =.(29)

is fulfilled. 7



Point (29) generally lies beyond the interval of (23); we should

thus turn our search to the relative minimums of function AV, re-

taining only conditions (20)-(22) and angle 0. The analysis and

solution of this problem for any fixed angle 0 is contained in

study [3].
S= ( min. (30)min.

If from all solutions derived at this stage there are those

for which inequality (24) is satisfactory, then by comparing the

characteristic velocities which correspond to them we find the

desired solution. Otherwise, when condition (24) is violated in

all solutions, the desired optimal maneuver is characterized by

the equality

1 = L, (31)

and we should go on to point 2.

2. Investigate a problem in which are retained the conditions

(20)-(22), (23), and inequality (24) is replaced by equality (31).

For numerical study we can use the methods developed in the next

section to define the optimal maneuver of descent for given values

of 1 and 0. The interval [0min' max breaks into a series of points

of equal parts and for each point calculation of the optimal man-

euver is made. Then, by comparing functions AV, we0 find the ap-

proximate values of the angle 0 and the parameters of the desired

optimal maneuver. If the accuracy obtained is insufficient, a

localized specification of these approximate values may be carried

out by one of the methods of successive approximations.

Let us now introduce, in addition to conditions (20)-(24),

limitations on the variables z and Ure. The problem of optimi-

zation of function AV, just as in point 2, does not yield to ana-

lytic study. For its numerical solution we can use methods de-

veloped in the next section for constructing an optimal maneuver
8



of descent of module I for fixed parameters 1 and (, which allows /11

consideration of these limitations on the variables z and Ure. The

definition of the desired solution is done as was -ated above-,in.

point 2. The only difference is that here two intervals break

down into a series of parts [ min' (max ] ' [al(l - el) - r 2 , L],
and calculation is made on all pairs of points, wherein one point

is selected from the interval of variation of angle @, and the

other from the interval of permissible values of distance 1. This

approach is especially 'convenient where,!great accuracy is not re-

quired, but it is important to produce a picture of change in the

parameters of optimal maneuvers as a function of variations in 0

quantities 1 and D.

2. Mathematical algorithm of constructing an optimal

descent maneuver for fixed values of 1 and 4. 4

Below is a description of the methods used to solve this

problem under the assumption that are given the angle I of reco-

very module re-entry and the distance 1 between the modules at the

moment of finish. Mathematically we must seek the smallest value

of function (10) in the set of variables (19) which satisfy con-

ditions (12), (17), (20)-(22), wherein parameters 1 and are

knowns. This method permits consideration also of limitations on

variables z and Ure

Let us consider that the initial orbit is not round, and the

inequalities which follow are fulfilled

O<ql<Pl,
(32)rln>r2, (32)

(33)rl.<l+, (33)

rla>1-r 2, (34)
(35)

where rlp = al(l - e 1) and r la = al(l + el)--distance of peri-

center and apocenter of initial orbit, respectively. Condition
9



(33) signifies that the initial orbit is situated wholly outside

the dense layers of the atmosphere.

If rla < 1 - r2 or r lp> 1 + r2 , then apparently the descent

maneuvers with a given distance 1 are generally impossible. The

cases of

q1 =O,

ra=l-r2," (36)

will not be discussed here, since for each of them a selected pro-

blem loses its extremal nature and becomes determinant.

Let us now state the methods. From equalities (12), (21) /12

we find that

pl sec2+ p2 1/2

tg (%2,- ) - pt2_P2

- (38)

where the signs of the numerator and denominat6r in the last for-

mula coincide with the signs sin(e 2 - w) and cos (82 .- w), res-

pectively.

Relationship (13) permits us to find that

r5 +r 912= ---- r arc cos ± 1, (39)
2r3 r2

afid from equality (20) we get

sin (a8--m)= - &b3+iY2bi / b b -b
S'

cos (--,)= bb 3 -' 2 Y + b 2-b

2=_+1, • (40)
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where b,-=pq cos(w- )--plq, b, =pq sin (m-w), 1
b=p2--p. (41)

Henceforth, the symbols q, 01, 82, and w will imply func-

tions of the parameters p, 03, definable by relationships (37)-(41).

With such exception of variables, the remaining uAknowns p, 03 must

satisfy the following inequalities:

(42)
O<q<p,

r 2i+ r2_,i I 2r<2o
-- b 2b-b2>0.
bl+±-b]> O. (43)

(44)

As a result of relationship (42), i.e., the supposition on the

ellipticity of the transitional orbit; condition (22) is reduced

to the form =

" " .. .... (45)

whereof

-- . 3

A= K At+ a [E2-E---e (sin E-sin E,)] -
3

-a, 2[E'-E)--e (sin E.,-sin El))], (46)

where El, E2 and E , E2 are eccentric anomalies of modules I

and II at time tl, t2 respectively. Eccentric anomalies are easily

calculated in terms of known formulas of elliptical motion. Time /13

t2 - t1 of motion before re-entry is calculated thus:

t2-tl a= [E 2-E,-e (sin E2-sin E,)]. (47)

Let us now derive several inequalities and estimates which are

11



employed in numerical solution. Above all, from condition (42)

and the relationship

ra rlp ,  (48)

where r3--planetocentric distance of the apocenter of the tran-

sitional orbit, we find that

P* < P < a*, (49)

p, sec 4P*- . - , (50)

P** =max{ 2 [p-p-ptq)' ti 1J (51)

Let us note that here, the necessary and sufficient condition (44)

of ihtersection of intermediate and initial orbits is replaced by

necessary condition (48), thus henceforth in our solution we should

take into account condition (48).

Relationship (43) and the apparent inequality

(52)

produce r <r3 r*

. - ...... .. . ..... - - -| (5 3 )

where where r,=max (r, -- r 2}, r**=min {ra, l+r 2},
(54)

(55)

The latter inequality takes place due to relationships (34), (35).

Condition (53) defines two intervals, in which lie desired

values of the angle 83:
12



-- -------- .----- -- ~---.s'Q~~,(_ _ _ _ _ ___ 2) ,- ",_"__ _(56)

27 _ __ 3< 2 c -(57)

where

S= ++arccos t2, (58)

P1 82
P11 P4 q (59)

wherein it appears that /14

11 >' - (60)

The methods developed permit taking into account limitations

on the variables z and Ure. Let us introduce the requirement

Z<Zmax, (61)

where zmax is the prescribed miximum value of the zenith distance

of module II at the finish point at time t2. Then from formulas

(18) , (61) we yield

r3>-r *' (62)

' r, = l /2+r c+2COS zma

(63)

Calculation of condition (62) now reduces to computation of the

value of r, in relationships (53)-(59) according to formula

(64)
r=max r, I-r 2, r}. (64)

13



In the particular case where limitation (61) is the condition of

direct visibility between modules at the time of finish, the dis-

tance r3, becomes equal to

r3 = +;i (65)

Finally, the limitation on velocity Ure we will adopte in the

form

U < U, (66)
re

where the constant U is given. If we can ignore the velocity of

rotation of the atmosphere versus the value Ure, then condition

(66) is equivalent to the requirement that module I re-entry .velo-

city does not exceed some fixed value of U.

From relationships (14), (37), (66), we find that

S ~ Kp, sec (67)
P>P' P= U P>P*, (67)

and consequently, condition (66) will be taken into account if in-

equality (49) is replaced by

P p<p-P** (68)

Henceforth, if one or both limitations (62), (66) is intro-

duced, we will consider that the corresponding changes in inequa-

lities (49), (53)-(59) have been made.

Let us formulate the derived results. The problem of opti-

mization was reduced to searching for parameter p from the inter-

val (49) and angle 03 in one of the regions (56), (57) so that con-

ditions (44), (45), were fulfilled and function AV had its lowest /15

14



It is convenient in optimization to select the parameter p as a

variable and the corresponding angle 63 to consider as lying in the

region (56), (57) --- root of equation (45), for which conditions

(44) is fulfilled.

According to the concrete selection of parameters Y71 Y2 '
four forms of maneuver must be studied. Let us introduce the

quantity

5-271-72
2 6 12±1,9

which adoptsithe values j = 1, 2, 3, 4 for these forms. The

descent trajectory for j = 1, 3 (Y2 = 1) differs from the tra-

jectory for j = 2, 4 (y2 = -1) by the concrete selection of the

launch point in one of two points of intersection of the initial

and intermediate orbits,. Thus, in one case, the flight trajec-

tory of module I will go beyond the initial area limited by the

initial orbit; in the other case, it will be totally within this

region. Furthermore, maneuvers j = 1,2 (y1 = 1) differ from man-

euvers j = 3, 4 (Y1 = -1) in the fact that at the moment of fin-

ish, in the first instance, the orbital module overtakes the de-

scent module, i.e., it has a greater polar angle. In the second,

however, the polar angle of the descent module is greater than

the polar angle of the orbital module. Let us note that with

this comparison, angles :2, 83 should be brought to the inter-

val e102- 031 < T

Let us cite a brief description of a computercprogram which

employs the above algorithm.

I. A search is made of the approximate unknown value of the

parameter p by a global scanning of interval (49), which is broken

into n equal parts. For each point of division, all roots of

15



equation (45) are found which lie in areas (56), (57) and for which

condition (44) is fulfilled. In calculating the roots, rough con-

stant accuracies are taken, which ensures the rapidity of opera-

tion of this unit of the program. Of the multitude of all selected

values of parameter p and its corresponding roots, the pair p, 83
are chosen to which corresponds the smallest value of function AV.

These values are taken as approximate optimal values.

II. The precise optimal value of variable p and other para-

meters of the desired maneuver are found. Let us note that the

value AV as a function of parameter p for optimal selection of root

03 can have.ldiscontinuities of the first order and areas of nonexis-

tence, where in equation (45) there are generally no roots of the

necessary type. Due to the particular nature of the problem, the

specification of optimal values of the parameters to the produc"

tion of a prescribed accuracy should be done by the method of suc-

cessive approximations. In each approximation, the interval between

two values of the parameter p, adjacent to the optimal value of the /16

preceeding approximation, is broken down into some prescribed num-

ber of parts and calculation is carried out for all points of di-

vision. By comparison of the corresponding characteristic velo-

cities we determine the optimal value of the parameters of a given

approximation. For calculation of the roots of function A, we

takei constants ensuring the prescribed accuracy of computations.

In conclusion, let us touch upon the procedure of calculating

roots of function (46) for any fixed value of parameter p. For

determinacy, we will limit ourselves to descent maneuvers, whose

total time t2 - t1 of maneuver is strictly less than the period

of motion along the initial orbit. Accordingly, we will calcul-

ate eccentric anomalies appearing in equality (45)-(47), bearing

in mind the condition

E 1+2>>E 1,
16 E )+2x>E )+2x--> )>E) (70)



where 6 is any prescribed small quantity.

Areas (56), (57) are broken into N equal parts and for all

points of division the function A is calculated in succession.

Let us point out one aspect of this method. For any value of

the angle 83, we first determine the geometric picture of the

maneuver, i.e., the juxtaposition of orbits, and then select spe-

cific branches of the modules' flight along orbits from the con-

dition of fulfillment of inequalities (70). Thus, the critical

values of angle 63 can exist, to which corresponds the discontin-

uity of function E2 - El, if the flight branches in the descent

orbit are switched; and of function E ) - E ) , if the switch-
2 1

ing took place on the trajectory of travel of module II. At

points of switching, one of the maximum values of the correspond-

ing functions is equal to zero, and the magnitude of the discon-

tinuity is equal to 27. It is easy to see that the roots of

fundtion A may lie only at a finite distance from the critical

points. Let us select the number N so that the range of functions

E - El, E(1 ) -E(1) in each segment of fine subdivision of inter-2 E2 1
vals (56), (57) does not exceed some constant A. The range of

functions in segments containing critical points will then be

at least 2w - A. By increasing N and selecting a constant A,

we can always fulfill condition A < 2r - A and thereby produce

a criterion which will permit us, by the magnitude of the range of

function A to judge whether or not switching occurred within the

segment.

Let us return to a description of the procedure of calcula-

ting roots. If at the boundaries of some segment of division of

intervals (56), (57) function A has different signs, and its range

is less than the constant A, then within this segment is found the

root of function A , which is calculated using a series of inter-

17



polations.

Let us pause on another aspect of the algorithm. If for any /17

value of 03 the condition (44) is violated, then we will.say that

this value is in the area of non-existence of function A. When,

in selecting points from intervals (56), (57) we enter the range of

non-existence of function A, then with the next division , of the

given segment we suddenly find the boundary of the area of non-exis-

tence. In fulfilling the conditions of the presence of a root in

this area, the root is calculated by a series of interpolations.

A similar procedure is carried out when functions A move from

the area of nonexistence to values of angle 83 for which condition

(44) is fulfilled.

After we have found all roots of function A for the para-

meter p, we select.a root from them to which corresponds a smal-

ler value of function AV. With this concludes the determination

of roots of function A.

3. Numerical Example

As an example of the algorithm developed in-section 2, let

us consider the problem of sending from the space vehicle--the

sputnik Venus moving on an elliptical orbitr-a probe (module I)

to study the upper layers of the atmosphere of Venus. Let us

minimize the fuel expenditure.

Let us choose the following elements of the initial orbit

of the space vehicle:

ai=10000 KcM, e1=0,28, m =00. (71)

The height of the pericenter of the orbit above Venus" surface will

18



be 1,000 kilometers, while the height of the apocenter--6,600 km.

For numerical values of constants K and r2, let us use

K2=3,2423. 105 Ki/scm2,
r2=6200 Km.

S----(72)

Let us assume further that the moment of finish coincides with

the moment the probe enters the dense layers of atmosphere, then

S ar2,=t= AP=O~ - ](73)

Let us require that at the moment of finish, the values 1 and

D have prescribed values and are fulfilled the conditions of di-

rect visibility between the modules.

The calculations were performed on a M-20 computer. Two

distance values were selected

1 = 1,200 km, 1 = 1,600 km (74)

and the interval of variation of angle 0 with spacing of 50 from

zero to 300 was considered. The results are given in Table 1 and

2. Let us note that for both distance values 1, the minimum

characteristic velocity as a function of the angle 0 is attained

for several values of the angle $ + (00, 5), while this velocity

rapidly increases for D > 100. It is also of interest to note

that the velocity Ure forangles D not exceeding 10-15% in op-

timal maneuvers virtually is independent of angle 0 and is equal

to roughly 8.3 km/s.
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o TABLE 1i. PARA1 ETERS OF OPTIMAL MANEUVERS FOR 1 = 1,200 km

4 a, km e el 1 AU , D T 2 V z Ure km/s
kmLR/

0O 3 9497.4 0.3472 184099 368061 2095 8061 0.548 126014 5305 36003 8.394
5 3 9170.7 0.3343 222083 355063 350025 15074 0.329 149009 3259 34032 8.321

10 3 8949.2 0.3488 228052 339073 336040 19059 0.403 156054 2787 20080 8.268
15 1 8394.2 0.3616 245054 330091 331027 31062 0.601 163091 2055 2021 8.122
,20 2 7486.4 0.3782 281072 331032 333069 56005 1.080 195098 1045 14073 7.828
25 2 7000.1 0.4351 301031 332070 335088 73093 1.773 214039 645 19083 7.634
30 2 6760.9 0.5051 311070 334002 337069 85085 2.480 222028 468 22096 7.526

TABLE 2. PARAMETERS OF OPTIMAL MANEUVERS FOR 1 = 1,600 ka

t2-t ,  Ur , km/sS j a, km e e e1 0 w AU, 2 re
km/s s.

0°  3 9298.9 0.3333 219064 372046 361074 12046 0.268 156068 3589 56984 8.350
5 3 9321.2 0.3448 214*01 350065 340066 ,710029 0.261 167025 3491 52026 8.355

10 .3 9172.4 0.3633 212090 333036 325039 11092 0.328 167040 3276 40044 8.321
15 3 8888.3 0.3903 216058 319084 315004 16038 0.453 166052 2918 23071 8.253
20 1 8459.2 0.4242 222085 310042 310042 24015 0.655 162030 2553 1002 8.140
25 2 7698.6 0.4580 249041 309020 312042 41054 1.003 180046 1580 15080 7.904
30 2 7026.9 0.5103 270074 310054 315059 59002 1.552 197020 999 24099 7.645
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